1. Exercises from 5.7/5.8

Theorem 1. Let S be an oriented surface in \mathbb{R}^{3} which is bounded by a piecewise smooth curve ∂S, where the boundary is given an orientation consistent with S, then if $\mathbf{F}(x, y, z)$ is a C^{1} vector field defined on a neighbourhood of S in \mathbb{R}^{3} :

$$
\int_{\partial S} \mathbf{F} \cdot d \mathbf{x}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

Problem 1. (Folland 5.7.2) Evaluate:

$$
\int_{C} y d x+y^{2} d y+(x+2 z) d z
$$

where C is the curve given by the intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $y+z=a$, oriented counterclockwise as viewed from above

- We will apply Stokes' theorem
- First compute the gradient of \mathbf{F}

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
i & j & k \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y & y^{2} & x+2 z
\end{array}\right|=\left(\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right)
$$

- Notice that $\nabla \times \mathbf{F}$ is colinear with the normal of the plane $y+z=a$, so pick S to be the region of the plane bounded by C
- This choice gives $(\nabla \times \mathbf{F}) \cdot \mathbf{n}=-2$, so the integral over the whole surface is just -2 . (Area of the region of the plane inside C).
- It is clear that the plane $x+y=a$ cuts the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in a circle (this was worked out in a previous tutorial), and the radius of this circle is $a / \sqrt{2}$ (draw the picture)
- Now, by Stokes' theorem:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{x}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=-2\left(\pi a^{2} / 2\right)=-\pi a^{2}
$$

- Caveat: The final answer is different from the solution Folland has given in the answer key, so there may be a mistake somewhere.

Problem 2. (Folland 5.8.1(ef)) Determine whether the following vector fields is the gradient of a function f, and if so, find f.
(1) $\mathbf{F}_{1}(x, y, z)=(y-z) \mathbf{i}+(x-z) \mathbf{j}+(x-y) \mathbf{k}$
(2) $\mathbf{F}_{2}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+\log z\right) \mathbf{j}+((y+2) / z) \mathbf{k}$

Recall that on an open convex set, there exists a C^{1} function $f(x, y, z)$ such that $\mathbf{F}(x, y, z)=\nabla f$ if and only if $\nabla \times \mathbf{F}=0$. Since \mathbb{R}^{3} is a convex set, we just apply the theorem. For the first vector field,

$$
\nabla \times \mathbf{F}_{1}(x, y, z)=\left|\begin{array}{ccc}
i & j & k \\
\partial_{x} & \partial_{y} & \partial_{z} \\
y-z & x-z & x-y
\end{array}\right|=\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right) \neq 0
$$

So the first vector field is not the gradient of a function. For the second vector field,

$$
\nabla \times \mathbf{F}_{2}(x, y, z)=\left|\begin{array}{ccc}
i & j & k \\
\partial_{x} & \partial_{y} & \partial_{z} \\
2 x y & x^{2}+\log z & \frac{y+2}{z}
\end{array}\right|=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So there exists $f(x, y, z)$ such that $\nabla f=\mathbf{F}_{2}$. Let's find f. We have to solve the three equations:

$$
\partial_{x} f=2 x y
$$

$$
\begin{gathered}
\partial_{y} f=x^{2}+\log z \\
\partial_{z} f=\frac{y+2}{z}
\end{gathered}
$$

Integrating the first equation with respect to x gives $f(x, y, z)=x^{2} y+g(y, z)$. Differentiating with respect to y gives:

$$
x^{2}+\log z=\partial_{y} f=x^{2}+\partial_{y} g \Rightarrow \partial_{y} g=\log z \Rightarrow g(y, z)=y \log z+h(z)
$$

So $f(x, y, z)=x^{2} y+y \log z+h(z)$. Differentiating with respect to z gives:

$$
\frac{y+2}{z}=\frac{y}{z}+h^{\prime}(z) \Rightarrow h^{\prime}(z)=\frac{2}{z} \Rightarrow h(z)=2 \log z+C
$$

This gives a final solution:

$$
f(x, y, z)=x^{2} y+(y+2) \log z+C
$$

Problem 3. Determine whether the following vector fields are the curl of a vector field \mathbf{F}, and if so, find \mathbf{F}.

- $\mathbf{G}_{1}(x, y, z)=\left(x^{3}+y z\right) \mathbf{i}+\left(y-3 x^{2} y\right) \mathbf{j}+4 y^{2} \mathbf{k}$
- $\mathbf{G}_{2}(x, y, z)=(x y+z) \mathbf{i}+x z \mathbf{j}-(y z+x) \mathbf{k}$
(Thm. 5.63) Recall that on an open convex set, $\mathbf{G}(x, y, z)=\nabla \times \mathbf{F}$ for some vector field \mathbf{F} if and only if $\nabla \cdot \mathbf{G}=0$. So, by the theorem, all we have to do is compute the divergence of the vector fields.

$$
\nabla \cdot \mathbf{G}_{1}=3 x^{2}+1-3 x^{2}+0=1 \neq 0
$$

Therefore \mathbf{G}_{1} is not the curl of a vector field. On the other hand,

$$
\nabla \cdot \mathbf{G}_{2}=y+0-y=0
$$

So \mathbf{G}_{2} is the curl of some vector field, \mathbf{F}. Let's find \mathbf{F}. We may assume that $F_{3}=0$, then:

$$
\nabla \times \mathbf{F}=\left(\begin{array}{c}
-\partial_{z} F_{2} \\
\partial_{z} F_{1} \\
\partial_{x} F_{2}-\partial_{y} F_{1}
\end{array}\right)=\mathbf{G}_{2}
$$

Now we can solve for some of the components:

$$
\begin{gathered}
F_{2}(x, y, z)=-x y z-z^{2} / 2+\varphi(x, y) \\
F_{1}(x, y, z)=x z^{2} / 2-\psi(x, y)
\end{gathered}
$$

So combining these two results we get:

$$
-y z-x=\partial_{x} F_{2}-\partial_{y} F_{1}=-y z+\partial_{x} \varphi+\partial_{y} \psi
$$

We have the freedom now to choose $\psi(x, y)=0$, then:

$$
\partial_{x} \varphi=-x \Rightarrow \varphi(x, y)=-x^{2} / 2
$$

Then all together, one suitable vector field \mathbf{F} is given by:

$$
\mathbf{F}(x, y, z)=\left(x z^{2} / 2\right) \mathbf{i}-\left(x y z+z^{2} / 2+x^{2} / 2\right) \mathbf{j}
$$

